M.Tech. Degree Examination, December 2010 Linear Algebra

Time: 3 hrs. Max. Marks:100

Note: 1. Answer any FIVE full questions.

2. Missing data, if any, may be suitably assumed.

1 a. Solve the system of equations

$$2x - y + 3z = 2$$
; $x + 4y = -1$; $2x + 6y - z = 5$.

(06 Marks)

b. Find the inverse of the matrix

$$A = \begin{bmatrix} 3 & -6 & 3 \\ 6 & -7 & 2 \\ -1 & 7 & 0 \end{bmatrix}.$$
 (07 Marks)

- c. Solve the linear system : $4x_1 + x_2 + x_3 = 4$, $x_1 + 4x_2 2x_3 = 4$, $3x_1 + 2x_2 4x_3 = 6$ by using LU decomposition method. Take $u_{ii} = 1$. (07 Marks)
- 2 a. Prove that a non empty sub set W of a vector space V over a field F is a subspace of V if and only if.
 - i) $\forall \alpha, \beta \in W \Rightarrow \alpha + \beta \in W$
 - ii) $C \in F, \alpha \in W \Rightarrow c \cdot \alpha \in W$.

(06 Marks)

b. If W, and W_2 are subspaces of the vector space V(F), then prove that $W_1 + W_2$ is a subspace of V(F).

(07 Marks)

- c. Let S be a non empty subset of a vector space V(F), then prove that L(S) is a subspace of V.

 (07 Marks)
- a. Let V and W be vector spaces over the field F and let T be a linear transformation from V to W. Suppose that V is finite dimensional. Then, show that rank (T) + nullity (T) = dim (V).

 (07 Marks)
 - b. Let V be an n-dimensional vector space over the field F, and let W be an m-dimensional vector space over F. Then show that the space L (V, W) is finite dimensional and has dimension mn. (07 Marks)
 - Show that the set $S = \langle (1,1,0), (1,0,1), (0,1,1) \rangle$ is a basis of the vector space $V_3(R)$.

(06 Marks)

(06 Marks)

- 4 a. Let T: V → W be a linear map and d(V) = d(W) = n. Then, show that 'T' is non singular, iff 'T' → transforms linearly independent vector of V in to linearly independent vectors of W.
 - b. Show that the linear transformation $J: V_3(R) \to V_3(R)$ is defined by $T(x_1, x_2, x_3) = (x_1 + x_2 + x_3, x_3 x_2, x_3)$ is non singular and find its inverse. (07 Marks)
 - c. Let T_1 and T_2 be linear operators on R^2 defined as follows:

$$T_1(x_1,x_2) = (x_2, x_1)$$
; $T_2(x_1, x_2) = (x_1, 0)$. Show that $TT_2 \neq T_2T_1$.

5 a. Let $T: V \to W$ be a linear transformation. Then prove that R(T) is a subspace of W. (06 Marks)

- b. Find the matrix of the linear transformation $T: V_3(R) \to V_2(R)$ defined by T(x, y, z) = (x + y, y + z) relative to the bases $B_1 = [(1, 1, 1), (1, 0, 0), (1, 1, 0)], B_2 = [(1, 0), (0, 1)].$ (67 Marks)
- c. Let $T: V \to W$ be a linear transformation defined by T(x, y, z) = (x + y, x y, 2x + z). Find the range, null space, rank, nullity and hence verify the rank nullity theorem. (07 Marks)

- 6 a. If $S = \langle u_1, u_2 - up \rangle$ is an orthogonal set of non zero vectors in \mathbb{R}^n . Then prove that S is linearly independent and hence is a basis for the subspace spanned by S. (06 Marks)
 - b. The set $S = \langle u_1, u_2, u_3 \rangle$ $[u_1, u_2, u_3]$ where $u_1 = \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}$, $u_2 = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$ is an orthogonal

basis of R³. Express the vector $y = \begin{bmatrix} 6 \\ 1 \\ -8 \end{bmatrix}$ as a linear combination of the vectors in S.

(07 Marks)

- c. Find a QR factorization of $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ (07 Marks)
- 7 a. Show that a linear operator 'T' on a finite dimensional inner product space V is unitary iff 'T' preserves inner products. (06 Marks)
 - b. If $T: V \to W$ be a non singular linear map then prove that $T^{-1}: W \to V$ is linear and bijectives. (07 Marks)
 - c. Find the least square solution of the system Ax = b

for
$$A = \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix}$$
; $b = \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix}$. (07 Marks)

8 a. Orthogonally diagonalize the matrix

$$A = \begin{bmatrix} 3 & -2 & 4 \\ -2 & 6 & 2 \\ 4 & 2 & 3 \end{bmatrix}.$$
 (07 Marks)

b. Find the singular value decomposition of

$$A = \begin{bmatrix} 1 & 11 & 14 \\ 8 & 7 & -2 \end{bmatrix}.$$
 (07 Marks)

c. Find the maximum and minimum values of $Q(x) = 9x_1^2 + 4x_2^2 + 3x_3^2$ subject to the constraint $x^Tx = 1$. (06 Marks)

* * * * *